TENTATIVE

TOSHIBA PHOTOCOUPLER GaAIAs IRED & PHOTO-IC

TLP351

INVERTER FOR AIR CONDITIONOR IGBT/Power MOS FET GATE DRIVE INDUSTRIAL INVERTER

The TOSHIBA TLP351 consists of a GaAlAs light emitting diode and a integrated photodetector.

This unit is 8-lead DIP package.

TLP351 is suitable for gate driving circuit of IGBT or power MOS FET. Especially TLP351 is capable of "direct" gate drive of lower Power IGBTs.

•Guaranteed PerformanceOverTemperature : -40~100°C

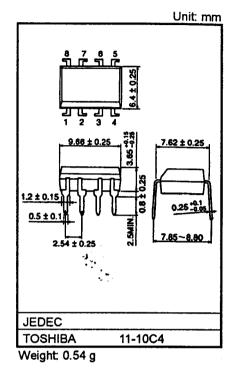
Power Supply Voltage

: 10~30V

Input Current

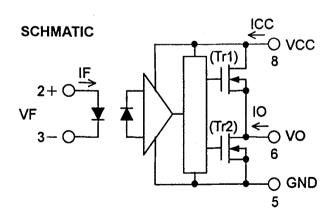
: IF=5mA(Max.)

Switching Time (tpLH/tpHL)

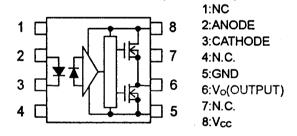

: 700ns(Max.)

Common mode transient immunity

: 10kV/us


Isolation Voltage

: 3750Vrms



TRUTH TABLE

	Input	LED	Tr1	Tr2	Output
ļ	Н	ON	ON	OFF	Н
	L	OFF	OFF	ON	L

PIN CONFIGURATION (TOP VIEW)

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Input Current, ON	lF(ON)	7.5		10	mA	
Input Voltage, OFF	V _{F(OFF)}	0	<u> </u>	0.8	V	
Supply Voltage	vcc	10	_	30	V	
Peak Output Current	IOPH/IOPL	_		±0.15	Α	
Operating Temperature	Topr	-40	_	100	°C	

MAXIMUM RATINGS (Ta = 25°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Forward Current	lF	20	mA
LED	Peak Transient Forward Current (Note 1)	IFPT	1	A
	Reverse Voltage	VR	5	V
œ	"H"Peak Output Current	10PH	-0.6	A
DETECTOR	*L*Peak Output Current	IOPL	0.6	Α
ETE	Output Voltage	VO	35	V
a	Supply Voltage	Vcc	35	V
Stora	ge Temperature Range	T _{stg}	-55~125	•c
Oper	ating Temperature Range	Topr	-40~100	*c
Lead	Soldering Temperature (10 s)	T _{sol}	260	°C
isolat	tion Voltage (AC, 1 minute, R.H.≦ 60%) (Note2)	BVS	3750	Vrms

(Note 1): Device considered a two-terminal device : LED side pins shorted together, and

DETECTOR side pins shorted together.

(Note 2): Device considerd a two terminal device : pins 1,2,3 and 4 shorted together, and pins 5,6,7

and 8 shorted together.

ELECTRICAL CHARACTERISTICS (Ta = -40~100°C, Unless otherwise specified)

CHARACTERISTIC		SYMBOL	TE	ST CON	DITION	MIN.	TYP.	MAX.	UNIT
Forward Voltage		VF	l _F = 5 mA	IF = 5 mA , Ta=25°C			1.55	1.70	V
Temperature Coefficient of Forward Voltage		∆VF/∆Ta	I _F = 5 mA ,			_	-2.0	_	mV/°C
Input Reverse Current		l _R	V _R =5V, Ta=25°C				10	μА	
Input Capacitance		Ст	V = 0 , f = 1MHz , Ta=25°C		_	45		pF	
Output Voltrage	"L" Level	VOL	VCC=15V	IO=100mA , VF=0.8V		-	0.4	1.0	٧
- Carpat Voltage	"H" Level	VOH	- VCC=13V	IO=-100mA , IF=5mA		11.0	13.3		
	"L" Level	IOPL1	- VCC=15V	IF=0mA	V6-5=2V	0.2	0.35		A
Output Current	r reset	IOPL2			V6-5=10V	0.4	0.63	-	
Output Current	"H" Level	IOPH1		IF=5mA	V8-6=4V	-0.2	-0.4		
		IOPH2			V8-6=10V	-0.4	-0.67		
Supply Current	"L" Level	ICCL	VCC=10~	~30V IF=0mA	IF=0mA		1.,1.3	2.0	
oupply ourient	"H" Level	ІССН	VO Open	VO Open			1.4	2.0	mA
Threshold Input Current	"Output L→H"	IFLH	VCC=15V	VCC=15V , VO>1V			2.5	5	mA
Threshold Input Voltage	"Output H→L"	VFHL	VCC=15V	VCC=15V , VO<1V		0.8			٧
Capacitance (Input-Output)		cs	VS=0 , f=11	VS=0 , f=1MHz , Ta=25℃		_	1.0		pF
Resistance (Input-Output)		RS	VS=500V,	Ta=25°C	, R.H.≦60%	10 ¹²	10 ¹⁴		Ω

^{*}All typical values are at Ta=25°C

SWITCHING CHARACTERISTICS (Ta = -40~100°C,Unless otherwise specified)

CHARACTERISTIC		SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Proposation Delay Time	L→H	tpLH	VCC=30V	IF=0→5mA	100		700	ns
Propagation Delay Time	H→L	tpHL	Rg=47Ω,Cg=3nF	IF=5→0mA	100		700	
Propagation Delay Difference Between Any Two Parts or Channels		PDD (tpHL-tpLH)	Rg=47Ω,Cg=3nF		-500		500	ns
Output Rise Time(10-90%)		tr	IF=5→0/0→5mA,VCC=30V Rg=47Ω,Cg=3nF		_	50		ns
Output Fall Time(90-10%)		tf ·				50	-	
Common Mode Transient Immunity at Hight Level Outout		СМн	VCM=1000Vp-p	IF=5mA VO(Max)=1.0V	-10000		_	
Common Mode Transient Immunity at Low Level Outout		CML	VCC=30V Ta=25°C IF=0mA VO(Min)=26V		10000	_		V/μs

^{*}All typical values are at Ta=25°C

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and furnes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.